MEMBRANE FILTRATION TECHNOLOGY FOR WATER TREATMENT IN TERMS OF MEMBRANE PERFORMANCE, ENERGY CONSUMPTION, AND COST ASPECTS: A REVIEW

Keywords: Filtration Membranes, Water Treatment, Energy Consumption, Cost Aspects

Abstract

The problems of water quality and its management are a global issue that must be resolved. Technology of membrane filtration shows the good potential of water treatment to improve water quality, eliminate harmful contaminants and efficiently restore nutrients. This article aims to give a comprehensive review of membrane filtration, consists of membrane filtration performance to remove contaminants, energy consumption, cost aspects and strategies of antifouling. Technologies in membrane filtration are microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and (reverse osmosis) RO. The results of this study indicate that, MF/UF system can effectively remove bacteria and be used as a pre-treatment before the NF/RO process. NF/RO system can remove contaminants higher than MF/UF. It can remove almost all contaminants, ions, heavy metals, viruses and pharmaceutical compounds (PhAC). However, the system is more susceptible to membrane fouling, but these problems can be solved with adequate pre-treatment. Water treatment with NF and RO offers a good alternative because its operation makes it possible to use lower energy consumption compared to conventional water treatment. Based on the cost aspect, if the virus and ion contamination are not the main target in the filtering and not for consumption, the MF/UF system is sufficient and will be more economical than using NF/RO. The finding of this study can provide insight into the effectiveness of membrane filtration technology in water treatment. Future research can develop membrane filtration technology so that it has good performance, low energy consumption and low cost.

Downloads

Download data is not yet available.

References

Abdel-Shafy, H. I., & Abdel-Shafy, S. H. (2017). Membrane technology for water and wastewater management and application in Egypt. Egyptian Journal of Chemistry, 60(3), 347–360. https://doi.org/10.21608/EJCHEM.2017.3480
Al-Malack, M. H. (2003). Technical and economic aspects of crossflow microfiltration. Desalination, 155(1), 89–94. https://doi.org/10.1016/S0011-9164(03)00242-X
Al-Mashharawi, S. K., Ghaffour, N., Al-Ghamdi, M., & Amy, G. L. (2013). Evaluating the efficiency of different microfiltration and ultrafiltration membranes used as pretreatment for Red Sea water reverse osmosis desalination. Desalination and Water Treatment, 51, 617–626. https://doi.org/10.1080/19443994.2012.699449
Almojjly, A., Johnson, D. J., Mandale, S., & Hilal, N. (2019). Optimisation of the removal of oil in water emulsion by using ceramic microfiltration membrane and hybrid coagulation/sand filter-MF. Journal of Water Process Engineering, 27, 15–23. https://doi.org/10.1016/j.jwpe.2018.11.007
Badruzzaman, M., Voutchkov, N., Weinrich, L., & Jacangelo, J. G. (2019). Selection of pretreatment technologies for seawater reverse osmosis plants: A review. Desalination, 449, 78–91. https://doi.org/10.1016/j.desal.2018.10.006
Barcellos, D., Queiroz, H. M., Nóbrega, G. N., de Oliveira Filho, R. L., Santaella, S. T., Otero, X. L., & Ferreira, T. O. (2019). Phosphorus enriched effluents increase eutrophication risks for mangrove systems in northeastern Brazil. Marine Pollution Bulletin, 142, 58–63. https://doi.org/10.1016/j.marpolbul.2019.03.031
Beyer, F., Laurinonyte, J., Zwijnenburg, A., Stams, A. J. M., & Plugge, C. M. (2017). Membrane Fouling and Chemical Cleaning in Three Full-Scale Reverse Osmosis Plants Producing Demineralized Water. Journal of Engineering (United Kingdom), 2017, 1–14. https://doi.org/10.1155/2017/6356751
Bilardi, S., Calabrò, P. S., Greco, R., & Moraci, N. (2018). Selective removal of heavy metals from landfill leachate by reactive granular filters. Science of the Total Environment, 644, 335–341. https://doi.org/10.1016/j.scitotenv.2018.06.353
Cai, Y., Chen, D., Li, N., Xu, Q., Li, H., He, J., & Lu, J. (2018). A smart membrane with antifouling capability and switchable oil wettability for high-efficiency oil/water emulsions separation. Journal of Membrane Science, 555, 69–77. https://doi.org/10.1016/j.memsci.2018.03.042
Carpintero-tepole, V., Brito-de, E., & Torrestiana-sánchez, B. (2017). Microfiltration of oil in water (O/W) emulsions: Effect of membrane microstructure and surface properties. Chemical Engineering Research and Design, 126, 286–296. https://doi.org/10.1016/j.cherd.2017.08.023
Chang, H., Liu, B., Wang, H., Zhang, S. Y., Chen, S., Tiraferri, A., & Tang, Y. Q. (2019). Evaluating the performance of gravity-driven membrane filtration as desalination pretreatment of shale gas flowback and produced water. Journal of Membrane Science, 587, 117187. https://doi.org/10.1016/j.memsci.2019.117187
Changmai, M., Das, P. P., Mondal, P., Pasawan, M., Sinha, A., Biswas, P., Sarkar, S., Purkait, M. K., Das, P. P., Mondal, P., Pasawan, M., Sinha, A., & Biswas, P. (2020). Hybrid electrocoagulation – microfiltration technique for treatment of nanofiltration rejected steel industry effluent. International Journal of Environmental Analytical Chemistry, 1–22. https://doi.org/10.1080/03067319.2020.1715381
Chatterjee, S., & De, S. (2017). Adsorptive removal of arsenic from groundwater using chemically treated iron ore slime incorporated mixed matrix hollow fiber membrane. Separation and Purification Technology, 179, 357–368. https://doi.org/10.1016/j.seppur.2017.02.019
Chen, A. S. C., Wang, L., Sorg, T. J., & Lytle, D. A. (2020). Removing arsenic and co-occurring contaminants from drinking water by full-scale ion exchange and point-of-use/point-of-entry reverse osmosis systems. Water Research, 172, 115455. https://doi.org/10.1016/j.watres.2019.115455
Chen, Z., Huang, T., Huang, X., Han, X., Yang, H., Cai, Z., Yao, L., Han, X., Zhang, M., & Huang, C. (2019). Characteristics, sources and environmental implications of atmospheric wet nitrogen and sulfur deposition in Yangtze River Delta. Atmospheric Environment, 219, 116904. https://doi.org/10.1016/j.atmosenv.2019.116904
Choobar, B. G., Shahmirzadi, M. A. A., Kargari, A., & Manouchehri, M. (2019). Journal of Environmental Chemical Engineering Fouling mechanism identi fi cation and analysis in micro fi ltration of laundry wastewater. Journal of Environmental Chemical Engineering, 7, 103030. https://doi.org/10.1016/j.jece.2019.103030
Cohen-Tanugi, D., & Grossman, J. C. (2012). Water desalination across nanoporous graphene. Nano Letters, 12(7), 3602–3608. https://doi.org/10.1021/nl3012853
Conklin, K. Y., Stancheva, R., Otten, T. G., Fadness, R., Boyer, G. L., Read, B., Zhang, X., Sheath, R. G., State, C., Oaks, S. T., Rd, V., & Marcos, S. (2020). Molecular and morphological characterization of a novel dihydroanatoxin-a producing Microcoleus species (cyanobacteria) from the Russian River. Harmful Algae, 93, 101767. https://doi.org/10.1016/j.hal.2020.101767
D’Agostino, P. M., Boundy, M. J., Harwood, T. D., Carmichael, W. W., Neilan, B. A., & Wood, S. A. (2019). Re-evaluation of paralytic shellfish toxin profiles in cyanobacteria using hydrophilic interaction liquid chromatography-tandem mass spectrometry. Toxicon, 158, 1–7. https://doi.org/10.1016/j.toxicon.2018.11.301
de Vries, H. J., Stams, A. J. M., & Plugge, C. M. (2020). Biodiversity and ecology of microorganisms in high pressure membrane filtration systems. Water Research, 172, 115511. https://doi.org/10.1016/j.watres.2020.115511
DEFRA. (2014). Water Framework Directive implementation in England and Wales: new and updated standards to protect the water environment. In Department for Environment Food and Rural Affairs. https://doi.org/10.1016/j.jengtecman.2009.06.008
Demoulin, C. F., Lara, Y. J., Wilmotte, A., Javaux, E. J., Cornet, L., François, C., & Baurain, D. (2019). Free Radical Biology and Medicine Cyanobacteria evolution : Insight from the fossil record. Free Radical Biology and Medicine, 140, 206–223. https://doi.org/10.1016/j.freeradbiomed.2019.05.007
Diallo, M. S. (2014). Water Treatment by Dendrimer-Enhanced Filtration: Principles and Applications. In Nanotechnology Applications for Clean Water: Solutions for Improving Water Quality: Second Edition (Second Edi, pp. 227–239). Elsevier Inc. https://doi.org/10.1016/B978-1-4557-3116-9.00015-9
Dong, G., Nagasawa, H., Yu, L., Guo, M., & Kanezashi, M. (2020). Energy-efficient separation of organic liquids using organosilica membranes via a reverse osmosis route. Journal of Membrane Science, 597, 117758. https://doi.org/10.1016/j.memsci.2019.117758
Economist.com. (2013). Graphene and desalination. https://www.economist.com/babbage/2013/04/04/allo-allo
Eeshwarasinghe, D., Loganathan, P., & Vigneswaran, S. (2019). Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon. Chemosphere, 223, 616–627. https://doi.org/10.1016/j.chemosphere.2019.02.033
Ezugbe, E. O., & Rathilal, S. (2020). Membrane technologies in wastewater treatment: A review. Membranes, 10(89), 1–28. https://doi.org/10.3390/membranes10050089
Ferrer, O., Casas, S., Galvan, C., Lucena, F., Bosch, A., Galofre, B., Mesa, J., Jofre, J., & Bernat, X. (2015). Direct ultrafiltration performance and membrane integrity monitoringby microbiological analysis. Water Research, 83, 121–131. https://doi.org/10.1016/j.watres.2015.06.039
Fornasiero, F., In, J. Bin, Kim, S., Park, H. G., Wang, Y., Grigoropoulos, C. P., Noy, A., & Bakajin, O. (2010). PH-tunable ion selectivity in carbon nanotube pores. Langmuir, 26(18), 14848–14853. https://doi.org/10.1021/la101943h
Forum, W. E. (2019). The Global Risks Report (14th Edition).
Foureaux, A. F. S., Reis, E. O., Lebron, Y., Moreira, V., Santos, L. V., Amaral, M. S., & Lange, L. C. (2019). Rejection of pharmaceutical compounds from surface water by nanofiltration and reverse osmosis. Separation and Purification Technology, 212, 171–179. https://doi.org/10.1016/j.seppur.2018.11.018
Garcia, N., Moreno, J., Cartmell, E., Rodriguez-Roda, I., & Judd, S. (2013). The cost and performance of an MF-RO/NF plant for trace metal removal. Desalination, 309, 181–186. https://doi.org/10.1016/j.desal.2012.10.017
Gerardo, M. L., Zanain, M. A., & Lovitt, R. W. (2015). Pilot-scale cross-flow microfiltration of Chlorella minutissima: A theoretical assessment of the operational parameters on energy consumption. Chemical Engineering Journal, 280, 505–513. https://doi.org/10.1016/j.cej.2015.06.026
Gholami, S., López, J., Rezvani, A., Vatanpour, V., & Cortina, J. L. (2020). Fabrication of thin-film nanocomposite nanofiltration membranes incorporated with aromatic amine-functionalized multiwalled carbon nanotubes. Rejection performance of inorganic pollutants from groundwater with improved acid and chlorine resistance. Chemical Engineering Journal, 384, 123348. https://doi.org/10.1016/j.cej.2019.123348
Global engineering. (2012). Membrane Filtration: Reverse Osmosis, Nanofiltration, Ultrafiltration and Microfiltration. 1–12. https://www.gea.com/en/binaries/membrane-filtration-ultrafiltration-nanofiltration-microfiltration-reverse-osmosis-gea_tcm11-34841.pdf
Golpour, M., & Pakizeh, M. (2017). Development of a new nanofiltration membrane for removal of kinetic hydrate inhibitor from water. Separation and Purification Technology, 183, 237–248. https://doi.org/10.1016/j.seppur.2017.04.011
Guo, H., Li, Z., Huang, J., Zhou, R., Wu, C., & Jin, Y. (2020). Microfiltration of Soy Sauce: Efficiency, Resistance and Fouling Mechanism at Different Operating Stages. Separation and Purification Technology, 116656. https://doi.org/10.1016/j.seppur.2020.116656
Han, D., Currell, M. J., Cao, G., & Hall, B. (2017). Alterations to groundwater recharge due to anthropogenic landscape change. Journal of Hydrology, 554, 545–557. https://doi.org/10.1016/j.jhydrol.2017.09.018
Hao, Z., Chen, L., Wang, C., Zou, X., Zheng, F., Feng, W., Zhang, D., & Peng, L. (2019). Heavy metal distribution and bioaccumulation ability in marine organisms from coastal regions of Hainan and Zhoushan, China. Chemosphere, 226, 340–350. https://doi.org/10.1016/j.chemosphere.2019.03.132
Harrington, K. (2013). New Graphene Desalination Requires Nearly 100 Times Less Energy. https://www.aiche.org/chenected/2013/09/new-graphene-desalination-requires-nearly-100-times-less-energy
Hassan, S. S. M., Abdel-shafy, H. I., & Mansour, M. S. M. (2019). Removal of pharmaceutical compounds from urine via chemical coagulation by green synthesized ZnO- nanoparticles followed by microfiltration for safe reuse. ARABIAN JOURNAL OF CHEMISTRY, 12(8), 4074–4083. https://doi.org/10.1016/j.arabjc.2016.04.009
He, Y., Wang, X., Xu, J., Yan, J., Ge, Q., Gu, X., & Jian, L. (2013). Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents. Bioresource Technology, 133, 150–157. https://doi.org/10.1016/j.biortech.2013.01.074
Hellinga, A., Grote, C., Büning, D., Ulbricht, M., Wessling, M., Polakovic, M., & Thom, V. (2019). Influence offlow alterations on bacteria retention during microfiltration. Journal of Membrane Science, 575, 147–159. https://doi.org/10.1016/j.memsci.2019.01.021
Hocking, M., & Kelly, B. F. J. (2016). Groundwater recharge and time lag measurement through Vertosols using impulse response functions. Journal of Hydrology, 535, 22–35. https://doi.org/10.1016/j.jhydrol.2016.01.042
Huang, B. C., Guan, Y. F., Chen, W., & Yu, H. Q. (2017). Membrane fouling characteristics and mitigation in a coagulation-assisted microfiltration process for municipal wastewater pretreatment. Water Research, 123, 216–223. https://doi.org/10.1016/j.watres.2017.06.080
Huang, J., Xu, C. chun, Ridoutt, B. G., Wang, X. chun, & Ren, P. an. (2017). Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. Journal of Cleaner Production, 159, 171–179. https://doi.org/10.1016/j.jclepro.2017.05.008
Hylling, O., Nikbakht Fini, M., Ellegaard-Jensen, L., Muff, J., Madsen, H. T., Aamand, J., & Hansen, L. H. (2019). A novel hybrid concept for implementation in drinking water treatment targets micropollutant removal by combining membrane filtration with biodegradation. Science of the Total Environment, 694, 133710. https://doi.org/10.1016/j.scitotenv.2019.133710
Jarvie, H. P., Smith, D. R., Norton, L. R., Edwards, F. K., Bowes, M. J., King, S. M., Scarlett, P., Davies, S., Dils, R. M., & Bachiller-Jareno, N. (2018). Phosphorus and nitrogen limitation and impairment of headwater streams relative to rivers in Great Britain: A national perspective on eutrophication. Science of the Total Environment, 621, 849–862. https://doi.org/10.1016/j.scitotenv.2017.11.128
Keene, N. A., Reusser, S. R., Scarborough, M. J., Grooms, A. L., Seib, M., Santo Domingo, J., & Noguera, D. R. (2017). Pilot plant demonstration of stable and efficient high rate biological nutrient removal with low dissolved oxygen conditions. Water Research, 121, 72–85. https://doi.org/10.1016/j.watres.2017.05.029
Kim, J. joo, Kim, K., Choi, Y. S., Kang, H., Kim, D. M., & Lee, J. C. (2018). Polysulfone based ultrafiltration membranes with dopamine and nisin moieties showing antifouling and antimicrobial properties. Separation and Purification Technology, 202, 9–20. https://doi.org/10.1016/j.seppur.2018.03.033
Kimura, K., Honoki, D., & Sato, T. (2017). Effective physical cleaning and adequate membrane flux for direct membrane filtration (DMF) of municipal wastewater: Up-concentration of organic matter for efficient energy recovery. Separation and Purification Technology, 181, 37–43. https://doi.org/10.1016/j.seppur.2017.03.005
Krystynik, P., & Tito, D. N. (2017). Key process parameters affecting performance of electro-coagulation. Chemical Engineering and Processing: Process Intensification, 117, 106–112. https://doi.org/10.1016/j.cep.2017.03.022
Kulkarni, P., Raspanti, G. A., Bui, A. Q., Bradshaw, R. N., Kniel, K. E., Chiu, P. C., Sharma, M., Sapkota, A., & Sapkota, A. R. (2019). Zerovalent iron-sand filtration can reduce the concentration of multiple antimicrobials in conventionally treated reclaimed water. Environmental Research, 172, 301–309. https://doi.org/10.1016/j.envres.2019.02.012
Lam, B., Déon, S., Morin-Crini, N., Crini, G., & Fievet, P. (2018). Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances. Journal of Cleaner Production, 171, 927–933. https://doi.org/10.1016/j.jclepro.2017.10.090
Lateef, S. K., Soh, B. Z., & Kimura, K. (2013). Direct membrane filtration of municipal wastewater with chemically enhanced backwash for recovery of organic matter. Bioresource Technology, 150, 149–155. https://doi.org/10.1016/j.biortech.2013.09.111
Lee, S., Ihara, M., Yamashita, N., & Tanaka, H. (2017). Improvement of virus removal by pilot-scale coagulation-ultrafiltration process for wastewater reclamation: Effect of optimization of pH in secondary effluent. Water Research, 114, 23–30. https://doi.org/10.1016/j.watres.2017.02.017
Li, J. H., Zhang, H., Zhang, W., & Liu, W. (2019). Nanofiber membrane of graphene oxide/polyacrylonitrile with highly efficient antibacterial activity. Journal of Biomaterials Science, Polymer Edition, 30(17), 1620–1635. https://doi.org/10.1080/09205063.2019.1652793
Li, K., Liu, Q., Fang, F., Wu, X., Xin, J., Sun, S., Wei, Y., Ruan, R., Chen, P., Wang, Y., & Addy, M. (2020). Influence of nanofiltration concentrate recirculation on performance and economic feasibility of a pilot-scale membrane bioreactor-nanofiltration hybrid process for textile wastewater treatment with high water recovery. Journal of Cleaner Production, 261, 121067. https://doi.org/10.1016/j.jclepro.2020.121067
Li, Z., Feng, X., Li, G., Bi, X., Zhu, J., & Qin, H. (2013). Distributions , sources and pollution status of 17 trace metal / metalloids in the street dust of a heavily industrialized city of central China. Environmental Pollution, 182, 408–416. https://doi.org/10.1016/j.envpol.2013.07.041
Licona, K. P. M., Geaquinto, L. R. d. O., Nicolini, J. V., Figueiredo, N. G., Chiapetta, S. C., Habert, A. C., & Yokoyama, L. (2018). Assessing potential of nanofiltration and reverse osmosis for removal of toxic pharmaceuticals from water. Journal of Water Process Engineering, 25, 195–204. https://doi.org/10.1016/j.jwpe.2018.08.002
Lin, G., Li, K., Liang, S., Li, Y., Su, Y., & Wang, X. (2020). Compound eutrophication index: An integrated approach for assessing ecological risk and identifying the critical element controlling harmful algal blooms in coastal seas. Marine Pollution Bulletin, 150, 110585. https://doi.org/10.1016/j.marpolbul.2019.110585
Lin, L., Yang, H., & Xu, X. (2022). Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Frontiers in Environmental Science, 10, 1–16. https://doi.org/10.3389/fenvs.2022.880246
Lin, S., & Elimelech, M. (2015). Staged reverse osmosis operation: Configurations, energy efficiency, and application potential. Desalination, 366, 9–14. https://doi.org/10.1016/j.desal.2015.02.043
Lu, X., Lu, Y., Chen, D., Su, C., Song, S., Wang, T., Tian, H., Liang, R., Zhang, M., & Khan, K. (2019). Climate change induced eutrophication of cold-water lake in an ecologically fragile nature reserve. Journal of Environmental Sciences, 75, 359–369. https://doi.org/10.1016/j.jes.2018.05.018
Manni, A., Achiou, B., Karim, A., Harrati, A., Sadik, C., Ouammou, M., Younssi, S. A., & Bouari, A. El. (2020). New low-cost ceramic microfiltration membrane made from natural magnesite for industrial wastewater treatment. Journal of Environmental Chemical Engineering, 103906. https://doi.org/10.1016/j.jece.2020.103906
Manouchehri, M., & Kargari, A. (2017). Water recovery from laundry wastewater by the cross flow microfiltration process: A strategy for water recycling in residential buildings. Journal of Cleaner Production, 168, 227–238. https://doi.org/10.1016/j.jclepro.2017.08.211
McLachlan, P. J., Chambers, J. E., Uhlemann, S. S., & Binley, A. (2017). Geophysical characterisation of the groundwater–surface water interface. Advances in Water Resources, 109, 302–319. https://doi.org/10.1016/j.advwatres.2017.09.016
Meena, R. A. A., Yukesh Kannah, R., Sindhu, J., Ragavi, J., Kumar, G., Gunasekaran, M., & Rajesh Banu, J. (2019). Trends and resource recovery in biological wastewater treatment system. Bioresource Technology Reports, 7, 100235. https://doi.org/10.1016/j.biteb.2019.100235
Mestre, S., Gozalbo, A., Lorente-ayza, M. M., & Sánchez, E. (2019). Journal of the European Ceramic Society Low-cost ceramic membranes : A research opportunity for industrial application. Journal of the European Ceramic Society, 39(12), 3392–3407. https://doi.org/10.1016/j.jeurceramsoc.2019.03.054
Mi, Y. F., Xu, G., Guo, Y. S., Wu, B., & An, Q. F. (2020). Development of antifouling nanofiltration membrane with zwitterionic functionalized monomer for efficient dye/salt selective separation. Journal of Membrane Science, 601(3), 117795. https://doi.org/10.1016/j.memsci.2019.117795
Mohammad-pajooh, E., Turcios, A. E., Cuff, G., Weichgrebe, D., Rosenwinkel, K. H., Vedenyapina, M. D., & Sharifullina, L. R. (2018). Removal of inert COD and trace metals from stabilized landfill leachate by granular activated carbon (GAC) adsorption. Journal of Environmental Management, 228, 189–196. https://doi.org/10.1016/j.jenvman.2018.09.020
Moraes, I. V. M. d., Rabelo, R. S., Pereira, J. A. d. L., Hubinger, M. D., & Schmidt, F. L. (2018). Concentration of hydroalcoholic extracts of graviola (Annona muricata L.) pruning waste by ultra and nanofiltration: Recovery of bioactive compounds and prediction of energy consumption. Journal of Cleaner Production, 174, 1412–1421. https://doi.org/10.1016/j.jclepro.2017.11.062
Moussa, D. T., El-Naas, M. H., Nasser, M., & Al-Marri, M. J. (2017). A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. Journal of Environmental Management, 186, 24–41. https://doi.org/10.1016/j.jenvman.2016.10.032
Myat, D. T., Roddick, F., Puspita, P., Skillman, L., Charrois, J., Kristiana, I., Uhl, W., Vasyukova, E., Roeszler, G., Chan, A., Zhu, B., Muthukumaran, S., Gray, S., & Duke, M. (2018). Effect of oxidation with coagulation and ceramic microfiltration pre-treatment on reverse osmosis for desalination of recycled wastewater. Desalination, 431, 106–118. https://doi.org/10.1016/j.desal.2017.10.029
Nidhi Maalige, R., Aruchamy, K., Mahto, A., Sharma, V., Deepika, D., Mondal, D., & Nataraj, S. K. (2019). Low operating pressure nanofiltration membrane with functionalized natural nanoclay as antifouling and flux promoting agent. Chemical Engineering Journal, 358, 821–830. https://doi.org/10.1016/j.cej.2018.10.087
Norouzi, M., Sharifnezhad, H., & Hosseini, S. G. (2019). Preparation and modification of polyethersulphone MF/UF membrane by TiO2 nanoparticles for pre-treatment of Pink water. International Journal of Environmental Analytical Chemistry, 100(2), 175–188. https://doi.org/10.1080/03067319.2019.1634700
Paul, D. (2017). Research on heavy metal pollution of river Ganga: A review. Annals of Agrarian Science, 15(2), 278–286. https://doi.org/10.1016/j.aasci.2017.04.001
Peña, N., Gallego, S., del Vigo, F., & Chesters, S. P. (2013). Evaluating impact of fouling on reverse osmosis membranes performance. Desalination and Water Treatment, 51(4–6), 958–968. https://doi.org/10.1080/19443994.2012.699509
Peydayesh, M., Mohammadi, T., & Bakhtiari, O. (2019). Water desalination via novel positively charged hybrid nanofiltration membranes filled with hyperbranched polyethyleneimine modified MWCNT. Journal of Industrial and Engineering Chemistry, 69, 127–140. https://doi.org/10.1016/j.jiec.2018.09.007
Phiri, I., Young, K., Woo, J., San, W., Hern, S., Myoun, J., Jung, H., & Si, À. (2019). Journal of Industrial and Engineering Chemistry Simultaneous complementary oil-water separation and water desalination using functionalized woven glass fi ber membranes. Journal of Industrial and Engineering Chemistry, 73, 78–86. https://doi.org/10.1016/j.jiec.2018.12.049
Qiao, D., Wang, G., Li, X., Wang, S., & Zhao, Y. (2020). Pollution, sources and environmental risk assessment of heavy metals in the surface AMD water, sediments and surface soils around unexploited Rona Cu deposit, Tibet, China. Chemosphere, 248, 125988. https://doi.org/10.1016/j.chemosphere.2020.125988
Qiu, Y., Lee, B. E., Neumann, N., Ashbolt, N., Craik, S., Maal-Bared, R., & Pang, X. L. (2015). Assessment of human virus removal during municipal wastewater treatment in Edmonton, Canada. Journal of Applied Microbiology, 119(6), 1729–1739. https://doi.org/10.1111/jam.12971
Racar, M., Dolar, D., Farkaš, M., Milčić, N., Špehar, A., & Košutić, K. (2019). Rendering plant wastewater reclamation by coagulation, sand filtration, and ultrafiltration. Chemosphere, 227, 207–215. https://doi.org/10.1016/j.chemosphere.2019.04.045
Rachbauer, L., Granda, C. B., Shrestha, S., Fuchs, W., Gabauer, W., Singer, S. W., Simmons, B. A., & Urgun-Demirtas, M. (2024). Energy and nutrient recovery from municipal and industrial waste and wastewater - A perspective. Journal of Industrial Microbiology and Biotechnology, 51, 1–14. https://doi.org/10.1093/jimb/kuae040
Rahimpour, A., Jahanshahi, M., Mortazavian, N., Madaeni, S. S., & Mansourpanah, Y. (2010). Preparation and characterization of asymmetric polyethersulfone and thin-film composite polyamide nanofiltration membranes for water softening. Applied Surface Science, 256(6), 1657–1663. https://doi.org/10.1016/j.apsusc.2009.09.089
Rajendran, V., Nirmaladevi D, S., Srinivasan, B., Rengaraj, C., & Mariyaselvam, S. (2018). Quality assessment of pollution indicators in marine water at critical locations of the Gulf of Mannar Biosphere Reserve, Tuticorin. Marine Pollution Bulletin, 126, 236–240. https://doi.org/10.1016/j.marpolbul.2017.10.091
Rasouli, Y., Abbasi, M., & Hashemifard, S. A. (2019). Fabrication, characterization, fouling behavior and performance study of ceramic microfiltration membranes for oily wastewater treatment. Journal of Asian Ceramic Societies, 7(4), 476–495. https://doi.org/10.1080/21870764.2019.1667070
Reis, B. G., Araújo, A. L. B., Vieira, C. C., Amaral, M. C. S., & Ferraz, H. C. (2019). Assessing potential of nanofiltration for sulfuric acid plant effluent reclamation: Operational and economic aspects. Separation and Purification Technology, 222, 369–380. https://doi.org/10.1016/j.seppur.2019.04.048
Richards, B. S., Capão, D. P. S., Früh, W. G., & Schäfer, A. I. (2015). Renewable energy powered membrane technology : Impact of solar irradiance fluctuations on performance of a brackish water reverse osmosis system. SEPARATION AND PURIFICATION TECHNOLOGY, 156(2), 379–390. https://doi.org/10.1016/j.seppur.2015.10.025
Salman, M., Yaseen, M., & Shakir, M. (2022). Recent Developments in Membrane Filtration for Wastewater Treatment. In Industrial Wastewater Treatment. https://doi.org/https://doi.org/10.1007/978-3-030-98202-7_1
Saniei, N., Ghasemi, N., Zinatizadeh, A. A., Zinadini, S., Ramezani, M., & Derakhshan, A. A. (2020). Preparation and characterization of a novel antifouling nano filtration poly ethersulfone (PES) membrane by embedding goethite-tannic acid nanoparticles. Separation and Purification Technology, 241(6), 116646. https://doi.org/10.1016/j.seppur.2020.116646
Sarah, R., Tabassum, B., Idrees, N., Hashem, A., & Abd_Allah, E. F. (2019). Bioaccumulation of heavy metals in Channa punctatus (Bloch) in river Ramganga (U.P.), India. Saudi Journal of Biological Sciences, 26, 979–984. https://doi.org/10.1016/j.sjbs.2019.02.009
Sathya, U., Nithya, M., & Keerthi. (2020). Fabrication and characterisation of fine-tuned Polyetherimide (PEI)/WO3 composite ultrafiltration membranes for antifouling studies. Chemical Physics Letters, 744, 137201. https://doi.org/10.1016/j.cplett.2020.137201
Shah, A., Arjunan, A., Baroutaji, A., & Zakharova, J. (2023). A review of physicochemical and biological contaminants in drinking water and their impacts on human health. Water Science and Engineering, 16(4), 333–344. https://doi.org/10.1016/j.wse.2023.04.003
Shen, J., Jeihanipour, A., Richards, B. S., & Schäfer, A. I. (2019). Renewable energy powered membrane technology : Experimental investigation of system performance with variable module size and fluctuating energy. Separation and Purification Technology, 221, 64–73. https://doi.org/10.1016/j.seppur.2019.03.004
Shen, J., Richards, B. S., & Schäfer, A. I. (2016). Renewable Energy Powered Membrane Technology : Case Study of St . Dorcas Borehole in Tanzania Demonstrating Fluoride Removal via Nanofiltration / Reverse Osmosis. Separation and Purification Technology, 170, 445–452. https://doi.org/10.1016/j.seppur.2016.06.042
Sillanpää, M., Ncibi, M. C., Matilainen, A., & Vepsäläinen, M. (2018). Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere, 190, 54–71. https://doi.org/10.1016/j.chemosphere.2017.09.113
Silva, F. C. (2018). Fouling of Nanofiltration Membranes. In Nanofiltration (pp. 119–131). https://doi.org/10.5772/intechopen.75353
Silva, J. A. (2023). Wastewater Treatment and Reuse for Sustainable Water Resources Management: A Systematic Literature Review. Sustainability (Switzerland), 15(14), 1–31. https://doi.org/10.3390/su151410940
Sounthararajah, D. P., Loganathan, P., Kandasamy, J., & Vigneswaran, S. (2015). Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns. Journal of Hazardous Materials, 287, 306–316. https://doi.org/10.1016/j.jhazmat.2015.01.067
Stephens, G. L., Slingo, J. M., Rignot, E., Reager, J. T., Hakuba, M. Z., Durack, P. J., Worden, J., & Rocca, R. (2020). Earth’s water reservoirs in a changing climate. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476(2236). https://doi.org/10.1098/rspa.2019.0458
Tai, Z. S., Abd Aziz, M. H., Othman, M. H. D., Mohamed Dzahir, M. I. H., Hashim, N. A., Koo, K. N., Hubadillah, S. K., Ismail, A. F., A Rahman, M., & Jaafar, J. (2019). Ceramic Membrane Distillation for Desalination. Separation & Purification Reviews, 1–40. https://doi.org/10.1080/15422119.2019.1610975
Tawalbeh, M., Al Mojjly, A., Al-Othman, A., & Hilal, N. (2018). Membrane separation as a pre-treatment process for oily saline water. Desalination, 447, 182–202. https://doi.org/10.1016/j.desal.2018.07.029
Tay, M. F., Liu, C., Cornelissen, E. R., Wu, B., & Chong, T. H. (2018). The feasibility of nanofiltration membrane bioreactor (NF-MBR)+reverse osmosis (RO) process for water reclamation: Comparison with ultrafiltration membrane bioreactor (UF-MBR)+RO process. Water Research, 129, 180–189. https://doi.org/10.1016/j.watres.2017.11.013
Thuy, N. T. H., & Boontawan, A. (2017). Production of very-high purity succinic acid from fermentation broth using microfiltration and nanofiltration-assisted crystallization. Journal of Membrane Science, 524, 470–481. https://doi.org/10.1016/j.memsci.2016.11.073
Trinh, T. A., Li, W., Han, Q., Liu, X., Fane, A. G., & Chew, J. W. (2018). Analyzing external and internal membrane fouling by oil emulsions via 3D optical coherence tomography. Journal of Membrane Science, 548, 632–640. https://doi.org/10.1016/j.memsci.2017.10.043
UNICEF. (2015). Progress on sanitation and drinking water: 2015 update and mdg assessment. World Health Organization and United Nations Children’s Fund.
Veréb, G., Végh, J., Kertész, S., Beszédes, S., Hodúr, C., & László, Z. (2019). Effects of Pre-ozonation on Membrane Filtration of Oil-in-water Emulsions Using Different Polymeric (PES, PAN, PTFE) Ultrafilter Membranes. Ozone: Science and Engineering, 1–14. https://doi.org/10.1080/01919512.2019.1652567
Vital, B., Bartacek, J., Ortega-Bravo, J. C., & Jeison, D. (2018). Treatment of acid mine drainage by forward osmosis: Heavy metal rejection and reverse flux of draw solution constituents. Chemical Engineering Journal, 332, 85–91. https://doi.org/10.1016/j.cej.2017.09.034
Wei, W., Sun, M., Zhang, L., Zhao, S., Wu, J., & Wang, J. (2017). Underwater oleophobic PTFE membrane for efficient and reusable emulsion separation and the influence of surface wettability and pore size. Separation and Purification Technology, 189, 32–39. https://doi.org/10.1016/j.seppur.2017.07.074
Werber, J. R., Osuji, C. O., & Elimelech, M. (2016). Materials for next-generation desalination and water purification membranes. Nature Reviews Materials, 1(5), 16018. https://doi.org/10.1038/natrevmats.2016.18
Wisniewska, K., Lewandowska, A. U., & Sliwinska-Wilczewska, S. (2019). The importance of cyanobacteria and microalgae present in aerosols to human health and the environment – Review study. Environment International, 131, 104964. https://doi.org/10.1016/j.envint.2019.104964
Wu, J., Wei, W., Li, S., Zhong, Q., Liu, F., Zheng, J., & Wang, J. (2018). The effect of membrane surface charges on demulsification and fouling resistance during emulsion separation. Journal of Membrane Science, 563, 126–133. https://doi.org/10.1016/j.memsci.2018.05.065
Xiong, J., Yu, S., Hu, Y., Yang, Y., & Wang, X. C. (2019). Applying a dynamic membrane filtration (DMF) process for domestic wastewater preconcentration: Organics recovery and bioenergy production potential analysis. Science of the Total Environment, 680, 35–43. https://doi.org/10.1016/j.scitotenv.2019.05.080
Xu, D., Bai, L., Tang, X., Niu, D., Luo, X., Zhu, X., Li, G., & Liang, H. (2019). A comparison study of sand filtration and ultrafiltration in drinking water treatment: Removal of organic foulants and disinfection by-product formation. Science of the Total Environment, 691, 322–331. https://doi.org/10.1016/j.scitotenv.2019.07.071
Xu, Y., Li, J., Zhang, X., Wang, L., Xu, X., Xu, L., Gong, H., Xie, H., & Li, F. (2019). Data integration analysis: Heavy metal pollution in China’s large-scale cattle rearing and reduction potential in manure utilization. Journal of Cleaner Production, 232, 308–317. https://doi.org/10.1016/j.jclepro.2019.05.337
Yang, L., She, Q., Wan, M. P., Wang, R., Chang, V. W. C., & Tang, C. Y. (2017). Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration. Water Research, 116, 116–125. https://doi.org/10.1016/j.watres.2017.03.025
Yasui, N., Suwa, M., Sakurai, K., Suzuki, Y., Kobayashi, K., Takabatake, H., Lee, S. T., & Tanaka, H. (2016). Removal characteristics and fluctuation of norovirus in a pilot-plant by an ultrafiltration membrane for the reclamation of treated sewage. Environmental Technology, 37(21), 2791–2801. https://doi.org/10.1080/09593330.2016.1164760
Yin, J., & Zhou, J. (2015). Novel polyethersulfone hybrid ultrafiltration membrane prepared with SiO2-g-(PDMAEMA-co-PDMAPS) and its antifouling performances in oil-in-water emulsion application. Desalination, 365, 46–56. https://doi.org/10.1016/j.desal.2015.02.017
Yin, Z., Tarabara, V. V., & Xagoraraki, I. (2015). Human adenovirus removal by hollow fiber membranes: Effect of membrane fouling by suspended and dissolved matter. Journal of Membrane Science, 482, 120–127. https://doi.org/10.1016/j.memsci.2015.02.028
Zaharia, C., Musteret, C. P., & Afrasinei, M. A. (2024). The Use of Coagulation–Flocculation for Industrial Colored Wastewater Treatment—(I) The Application of Hybrid Materials. Applied Sciences (Switzerland), 14(5). https://doi.org/10.3390/app14052184
Zaouk, L., Massé, A., Bourseau, P., Taha, S., Rabiller-Baudry, M., Jubeau, S., Teychené, B., Pruvost, J., & Jaouen, P. (2020). Filterability of exopolysaccharides solutions from the red microalga Porphyridium cruentum by tangential filtration on a polymeric membrane. Environmental Technology (United Kingdom), 41(9), 1167–1184. https://doi.org/10.1080/09593330.2018.1523234
Zhang, W., Jin, X., Liu, D., Lang, C., & Shan, B. (2017). Temporal and spatial variation of nitrogen and phosphorus and eutrophication assessment for a typical arid river — Fuyang River in northern China. Journal of Environmental Sciences (China), 55, 41–48. https://doi.org/10.1016/j.jes.2016.07.004
Zhang, X., Liu, C., Yang, J., Zhu, C., Zhang, L., & Xu, Z. (2020). Nanofiltration membranes with hydrophobic microfiltration substrates for robust structure stability and high water permeationflux. Journal of Membrane Science, 593, 117444. https://doi.org/10.1016/j.memsci.2019.117444
Zheng, Y., Vanderzalm, J., Hartog, N., Escalante, E. F., & Stefan, C. (2023). The 21st century water quality challenges for managed aquifer recharge: towards a risk-based regulatory approach. Hydrogeology Journal, 31(1), 31–34. https://doi.org/10.1007/s10040-022-02543-z
Zhou, Y., Wang, L., Zhou, Y., & Mao, X. zhong. (2020). Eutrophication control strategies for highly anthropogenic influenced coastal waters. Science of the Total Environment, 705. https://doi.org/10.1016/j.scitotenv.2019.135760
Zhu, X., Tang, X., Luo, X., Cheng, X., Xu, D., Gan, Z., Wang, W., Bai, L., Li, G., & Liang, H. (2020). Toward enhancing the separation and antifouling performance of thin-film composite nanofiltration membranes: A novel carbonate-based preoccupation strategy. Journal of Colloid and Interface Science, 571, 155–165. https://doi.org/10.1016/j.jcis.2020.03.044
Zhu, Y., Dou, P., He, H., Lan, H., Xu, S., Zhang, Y., He, T., & Niu, J. (2020). Improvement of permeability and rejection of an acid resistant polysulfonamide thin-film composite nanofiltration membrane by a sulfonated poly(ether ether ketone) interlayer. Separation and Purification Technology, 239, 116528. https://doi.org/10.1016/j.seppur.2020.116528
Published
2025-06-30
How to Cite
FirdausF., TrisnowatiE., & FatiatunF. (2025, June 30). MEMBRANE FILTRATION TECHNOLOGY FOR WATER TREATMENT IN TERMS OF MEMBRANE PERFORMANCE, ENERGY CONSUMPTION, AND COST ASPECTS: A REVIEW. SPEKTRA: Jurnal Kajian Pendidikan Sains, 11(1), 135-156. https://doi.org/https://doi.org/10.32699/spektra.v11i1.9025

Most read articles by the same author(s)