PROMOTION COPYWRITING GENERATOR MODELING USING PROBABILISTIC PARSING TECHNIQUE IN NLP: CASE STUDY AT CV. BERKAH TIGA DEWI

  • Nahar Mardiyantoro Informatics Engineering, Faculty of Engineering and Computer Science, Universitas Sains Al-Qur’an, Indonesia
  • Mohamad Ngatoilah Informatics Engineering, Faculty of Engineering and Computer Science, Universitas Sains Al-Qur’an, Indonesia
  • Kunti Najma Jalia Informatics Engineering, Faculty of Engineering and Computer Science, Universitas Sains Al-Qur’an, Indonesia
  • H Hidayaturofingah Islamic Family Law, Faculty of Sharia and Law, Universitas Sains Al-Qur’an, Indonesia
Keywords:
Natural Language Processing (NLP), Probabilistic Parsing, Promotional Copywriting, Text Generator Model, Model Performance Evaluation, Snack Business Promotion

Abstract

This study aims to develop a promotional copywriting generator model based on the Probabilistic Parsing technique in Natural Language Processing (NLP), applied to CV. Berkah Tiga Dewi, is a snack production and sales company located in Bumirejo Village, Mojotengah District, Wonosobo. The proposed model was evaluated using Precision, Recall, F1-Score, and Perplexity metrics. The results showed a significant increase in the quality of the promotional text, with the F1-Score of the Probabilistic Parsing model reaching 0.86, compared to the traditional method which only reached 0.70. In addition, a lower Perplexity value indicates that the resulting text is more natural and easy to understand. Validation through cross-validation techniques produced a consistent performance with an average Precision of 0.88 and Recall of 0.85. This study proves the effectiveness of the Probabilistic Parsing technique in producing persuasive and relevant copywriting, providing practical solutions to the company's marketing needs. The impacts include increasing product appeal and corporate image. Development prospects include adapting the model to other products and integrating with digital marketing platforms. In conclusion, the research objectives were achieved with relevant and significant results in the practical application of CV. Berkah Tiga Dewi marketing.

Downloads

Download data is not yet available.

References

Apriliyani, M., Musyaffaq, M. I., Nur’Aini, S., Handayani, M. R., & Umam, K. (2024). Implementasi analisis sentimen pada ulasan aplikasi Duolingo di Google Playstore menggunakan algoritma Naïve Bayes. AITI, 21(2), 298-311.
Artmann, S., Weismantel, R., & Zenklusen, R. (2017, June). A strongly polynomial algorithm for bimodular integer linear programming. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (pp. 1206-1219).
Bikel, D. M. (2004). Intricacies of Collins' parsing model. Computational Linguistics, 30(4), 479-511. https://doi.org/10.1162/0891201042544887
Clark, S., & Curran, J. R. (2007). Wide-coverage efficient statistical parsing with CCG and log-linear models. Computational Linguistics, 33(4), 493-552. https://doi.org/10.1162/coli.2007.33.4.493
Husna, O. (2024). Pengaruh Copywriting, Content Marketing dan Social Media Marketing Terhadap Minat Beli Konsumen Pada UMKM Mika Hijab Store Solo. Jurnal Ilmiah Ekonomi Islam dan General, 3(01), 333-343.
Jurafsky, D., & Martin, J. H. (2021). Speech and Language Processing (3rd ed.). Pearson.
Klein, D., & Manning, C. D. (2003). Accurate Unlexicalized Parsing. Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, 423-430.
Mandola, T. L., Rosalina, E., & Ihsan, H. (2024). Potret Implementasi Sistem Informasi Manajemen Perusahaan Ritel Dalam Upaya Meningkatkan Daya Saing di Era Digital: Studi Kasus Pada Budiman Swalayan. JURNAL ILMIAH EKONOMI, MANAJEMEN, BISNIS DAN AKUNTANSI, 1(4), 81-92.
Maulana, R., Maulana, M. S., Winnarto, M. N., Iqbal, M., & Lailiah, B. (2022). Pelatihan menjadi talenta digital dengan copywriting. Jurnal Penelitian dan Pengabdian Masyarakat Jotika, 2(1), 12-15.
Nurmalasari, N., Widarwati, E., Audina, R. N., Apriandi, D. W., & Holle, M. H. (2024). Analisis Strategi Digital Untuk Peningkatan Keunggulan Kompetitif Dalam Rangka Improvisasi Kinerja Keuangan UMKM. AMAL: Jurnal Ekonomi Syariah, 6(1), 24-41.
Parwati, K. Y. (2024). Pelatihan Copywriting Untuk Meningkatkan Social Media Marketing Perfomance Pada Pelaku Bisnis Gen-Z. Jurnal Pengabdian kepada Masyarakat Nusantara, 6(1.1), 103-111.
Resnik, P., & Elkiss, A. (2005). The Linguist’s Search Engine: A Unified Architecture for Indexing Linguistic Data and Language Models. Proceedings of the ACL Workshop on Building and Using Parallel Texts, 15-20.
Sari, S. (2024). Analisis Kualitas Kinerja Copywriter Terhadap Bidang Digital Marketing Dalam Meningkatkan Minat Klien PT Spora Cipta Paramedia. Jurnal Ilmiah Komunikasi (JIKOM) STIKOM IMA, 16(03), 13-20.
Smith, N. A., & Eisner, J. (2005). Contrastive estimation: Training log-linear models on unlabeled data. Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, 354-362.
Sopari, R. M., & Alawiyah, W. D. (2024). Pengaruh Visual Content Marketing Dan Copywriting Terhadap Tingkat Engagement Pengguna Instagram Di Kota Bandung. IKRAITH-EKONOMIKA, 7(3), 356-369.
Sugiyono. (2019). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung : Alphabet.
Sulistyo, D., Ahda, F., & Fitria, V. A. (2021). Epistomologi dalam Natural Language Processing. Jurnal Inovasi Teknologi dan Edukasi Teknik, 1(9), 652-664.
Yogantari, M. V., & Ariesta, I. G. B. B. B. (2021). Kajian Pengaruh Copywriting Kreatif Terhadap Identitas Brand Kedai Kopi Takeaway Di Denpasar. Jurnal Nawala Visual, 3(1), 8-16.
Published
2025-01-19
How to Cite
MardiyantoroN., NgatoilahM., JaliaK., & HidayaturofingahH. (2025, January 19). PROMOTION COPYWRITING GENERATOR MODELING USING PROBABILISTIC PARSING TECHNIQUE IN NLP: CASE STUDY AT CV. BERKAH TIGA DEWI. CATHA SAINTIFICA, 2(1), 20-28. https://doi.org/https://doi.org/10.32699/cathasaintifica.v2i1.7632

STATISTICS

Abstract viewed = 0 times
Downlod PDF downloaded = 0 times