PROMOTION COPYWRITING GENERATOR MODELING USING PROBABILISTIC PARSING TECHNIQUE IN NLP: CASE STUDY AT CV. BERKAH TIGA DEWI
Natural Language Processing (NLP), Probabilistic Parsing, Promotional Copywriting, Text Generator Model, Model Performance Evaluation, Snack Business Promotion
Abstract
This study aims to develop a promotional copywriting generator model based on the Probabilistic Parsing technique in Natural Language Processing (NLP), applied to CV. Berkah Tiga Dewi, is a snack production and sales company located in Bumirejo Village, Mojotengah District, Wonosobo. The proposed model was evaluated using Precision, Recall, F1-Score, and Perplexity metrics. The results showed a significant increase in the quality of the promotional text, with the F1-Score of the Probabilistic Parsing model reaching 0.86, compared to the traditional method which only reached 0.70. In addition, a lower Perplexity value indicates that the resulting text is more natural and easy to understand. Validation through cross-validation techniques produced a consistent performance with an average Precision of 0.88 and Recall of 0.85. This study proves the effectiveness of the Probabilistic Parsing technique in producing persuasive and relevant copywriting, providing practical solutions to the company's marketing needs. The impacts include increasing product appeal and corporate image. Development prospects include adapting the model to other products and integrating with digital marketing platforms. In conclusion, the research objectives were achieved with relevant and significant results in the practical application of CV. Berkah Tiga Dewi marketing.
Downloads
References
Artmann, S., Weismantel, R., & Zenklusen, R. (2017, June). A strongly polynomial algorithm for bimodular integer linear programming. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (pp. 1206-1219).
Bikel, D. M. (2004). Intricacies of Collins' parsing model. Computational Linguistics, 30(4), 479-511. https://doi.org/10.1162/0891201042544887
Clark, S., & Curran, J. R. (2007). Wide-coverage efficient statistical parsing with CCG and log-linear models. Computational Linguistics, 33(4), 493-552. https://doi.org/10.1162/coli.2007.33.4.493
Husna, O. (2024). Pengaruh Copywriting, Content Marketing dan Social Media Marketing Terhadap Minat Beli Konsumen Pada UMKM Mika Hijab Store Solo. Jurnal Ilmiah Ekonomi Islam dan General, 3(01), 333-343.
Jurafsky, D., & Martin, J. H. (2021). Speech and Language Processing (3rd ed.). Pearson.
Klein, D., & Manning, C. D. (2003). Accurate Unlexicalized Parsing. Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, 423-430.
Mandola, T. L., Rosalina, E., & Ihsan, H. (2024). Potret Implementasi Sistem Informasi Manajemen Perusahaan Ritel Dalam Upaya Meningkatkan Daya Saing di Era Digital: Studi Kasus Pada Budiman Swalayan. JURNAL ILMIAH EKONOMI, MANAJEMEN, BISNIS DAN AKUNTANSI, 1(4), 81-92.
Maulana, R., Maulana, M. S., Winnarto, M. N., Iqbal, M., & Lailiah, B. (2022). Pelatihan menjadi talenta digital dengan copywriting. Jurnal Penelitian dan Pengabdian Masyarakat Jotika, 2(1), 12-15.
Nurmalasari, N., Widarwati, E., Audina, R. N., Apriandi, D. W., & Holle, M. H. (2024). Analisis Strategi Digital Untuk Peningkatan Keunggulan Kompetitif Dalam Rangka Improvisasi Kinerja Keuangan UMKM. AMAL: Jurnal Ekonomi Syariah, 6(1), 24-41.
Parwati, K. Y. (2024). Pelatihan Copywriting Untuk Meningkatkan Social Media Marketing Perfomance Pada Pelaku Bisnis Gen-Z. Jurnal Pengabdian kepada Masyarakat Nusantara, 6(1.1), 103-111.
Resnik, P., & Elkiss, A. (2005). The Linguist’s Search Engine: A Unified Architecture for Indexing Linguistic Data and Language Models. Proceedings of the ACL Workshop on Building and Using Parallel Texts, 15-20.
Sari, S. (2024). Analisis Kualitas Kinerja Copywriter Terhadap Bidang Digital Marketing Dalam Meningkatkan Minat Klien PT Spora Cipta Paramedia. Jurnal Ilmiah Komunikasi (JIKOM) STIKOM IMA, 16(03), 13-20.
Smith, N. A., & Eisner, J. (2005). Contrastive estimation: Training log-linear models on unlabeled data. Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, 354-362.
Sopari, R. M., & Alawiyah, W. D. (2024). Pengaruh Visual Content Marketing Dan Copywriting Terhadap Tingkat Engagement Pengguna Instagram Di Kota Bandung. IKRAITH-EKONOMIKA, 7(3), 356-369.
Sugiyono. (2019). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung : Alphabet.
Sulistyo, D., Ahda, F., & Fitria, V. A. (2021). Epistomologi dalam Natural Language Processing. Jurnal Inovasi Teknologi dan Edukasi Teknik, 1(9), 652-664.
Yogantari, M. V., & Ariesta, I. G. B. B. B. (2021). Kajian Pengaruh Copywriting Kreatif Terhadap Identitas Brand Kedai Kopi Takeaway Di Denpasar. Jurnal Nawala Visual, 3(1), 8-16.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).