OPTIMASI DETEKSI TEPI PADA CITRA DIGITAL MELALUI TUNING HYPERPARAMETER CLAHE DAN FILTER BILATERAL: STUDI KASUS PADA GAMBAR KENDARAAN

  • Budi Hartanto STMIK Sinar Nusantara
  • Bramasto Wiryawan Yudanto STMIK Sinar Nusantara
  • Didik Nugroho STMIK Sinar Nusantara
Keywords:
Deteksi Tepi, Holistically-Nested Edge Detection, Hyperparameter Tuning, CLAHE

Abstract

Penelitian ini bertujuan untuk mengoptimalkan deteksi tepi gambar dengan menggabungkan metode Holistically-Nested Edge Detection (HED) dan filter Sobel-Laplacian. Metode ini diterapkan setelah tahap preprocessing yang mencakup Contrast Limited Adaptive Histogram Equalization (CLAHE) untuk peningkatan kontras dan filter bilateral untuk pengurangan noise. Tuning hyperparameter dilakukan untuk meningkatkan performa deteksi tepi. Evaluasi menunjukkan hasil terbaik dengan Precision sebesar 0.1920, Recall 0.5747, F1 Score 0.2878, Accuracy 0.7231, IoU Score 0.1681, dan ROC AUC Score 0.6569. Temuan ini menunjukkan bahwa metode yang diusulkan dapat meningkatkan akurasi deteksi tepi dengan hasil Recall dan Accuracy yang lebih baik dibandingkan metode konvensional, meskipun Precision dan IoU masih menunjukkan potensi untuk perbaikan lebih lanjut. Penelitian ini memberikan wawasan tentang pengaruh preprocessing dan tuning hyperparameter terhadap hasil deteksi tepi, serta aplikasinya dalam berbagai bidang pengolahan citra.

Downloads

Download data is not yet available.

References

[1] R. C. Gonzalez, Digital image processing. Pearson education india, 2009.
[2] J. Canny, “A computational approach to edge detection,” IEEE Trans Pattern Anal Mach Intell, no. 6, pp. 679–698, 1986.
[3] I. Sobel and G. Feldman, “An isotropic 3x3 image gradient operator for image processing,” Mach. Vis. Three–Dimens. Scenes, no. June, pp. 376–379, 1968.
[4] E. Türetken, G. González, C. Blum, and P. Fua, “Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors,” Neuroinformatics, vol. 9, pp. 279–302, 2011.
[5] P. Dollár and C. L. Zitnick, “Fast edge detection using structured forests,” IEEE Trans Pattern Anal Mach Intell, vol. 37, no. 8, pp. 1558–1570, 2014.
[6] V. Stimper, S. Bauer, R. Ernstorfer, B. Schölkopf, and R. P. Xian, “Multidimensional contrast limited adaptive histogram equalization,” IEEE Access, vol. 7, pp. 165437–165447, 2019.
[7] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter optimization,” Adv Neural Inf Process Syst, vol. 24, 2011.
[8] J. Jing, S. Liu, G. Wang, W. Zhang, and C. Sun, “Recent advances on image edge detection: A comprehensive review,” Neurocomputing, vol. 503, pp. 259–271, 2022.
[9] K. Zuiderveld, “Contrast limited adaptive histogram equalization,” in Graphics gems IV, 1994, pp. 474–485.
[10] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Sixth international conference on computer vision (IEEE Cat. No. 98CH36271), IEEE, 1998, pp. 839–846.
[11] S. Xie and Z. Tu, “Holistically-nested edge detection,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1395–1403.
[12] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter optimization,” Adv Neural Inf Process Syst, vol. 24, 2011.
[13] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks,” Inf Process Manag, vol. 45, no. 4, pp. 427–437, 2009.
[14] G. Csurka, D. Larlus, F. Perronnin, and F. Meylan, “What is a good evaluation measure for semantic segmentation?.,” in Bmvc, Bristol, 2013, pp. 10–5244.
Published
2024-07-31
How to Cite
[1]
HartantoB., YudantoB., and NugrohoD., “OPTIMASI DETEKSI TEPI PADA CITRA DIGITAL MELALUI TUNING HYPERPARAMETER CLAHE DAN FILTER BILATERAL: STUDI KASUS PADA GAMBAR KENDARAAN”, Biner : Jurnal Ilmiah Informatika dan Komputer, vol. 3, no. 2, pp. 134-141, Jul. 2024.
Section
Articles

STATISTICS

Abstract viewed = 0 times
PDF downloaded = 0 times