PENERAPAN IMAGE RECOGNITION DALAM PENGENALAN OBJEK MENGGUNAKAN MODEL RESNET-50

  • Budi Hartanto STMIK Sinar Nusantara
  • Teguh Susyanto STMIK Sinar Nusantara
Keywords:
CNN, DeepLearning, ResNet50.

Abstract

Artificial intelligence atau kecerdasan buatan merupakan suatu kemampuan sistem untuk mengimpretasikan suatu data eksternal secara benar. Teknik Artificial intelegence (AI) menggunakan data dalam jumlah yang besar untuk membuat mesin atau sistem menjadi semakin cerdas yang bisa menangani tugas-tugas yang membutuhkan kecerdasan manusia. Pada penelitian ini mengungkapkan bahwa dengan menerapkan model deep learning menggunakan Model ResNet 50 dapat mengenali objek gambar dengan prediksi yang sangat baik. Metode dalam penelitian ini menggunakan metode kuantitatif. Tujuan dari penelitian ini yaitu dengan menerapkan model Convolutional Neural Network atau CNN maka model untuk prediksi berdasarkan data citra dapat bekerja secara baik. Hasil akurasi dalam model ResNet50 dalam melakukan prediksi foto objek didapatkan angka 97%, sehingga model ini sudah layak untuk dikembangkan atau dilakukan transfer learning agar hasil akurasi menjadi lebih baik dan sesuai dengan konfigurasi atau objek yang akan dilakukan training atau pelatihan data.

Downloads

Download data is not yet available.

References

[1] A. Kaplan and M. Haenlein, “Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence,” Bus. Horiz., vol. 62, no. 1, pp. 15–25, 2019, doi: https://doi.org/10.1016/j.bushor.2018.08.004.
[2] O. A. Omitaomu and H. Niu, “Artificial intelligence techniques in smart grid: A survey,” Smart Cities, vol. 4, no. 2, pp. 548–568, 2021.
[3] S. Srivastava, A. V. Divekar, C. Anilkumar, I. Naik, V. Kulkarni, and V. Pattabiraman, “Comparative analysis of deep learning image detection algorithms,” J. Big Data, vol. 8, no. 1, pp. 1–27, 2021.
[4] A. R. Pathak, M. Pandey, and S. Rautaray, “Application of Deep Learning for Object Detection,” Procedia Comput. Sci., vol. 132, pp. 1706–1717, 2018, doi: https://doi.org/10.1016/j.procs.2018.05.144.
[5] H. Schulz and S. Behnke, “Deep learning: Layer-wise learning of feature hierarchies,” KI-Künstliche Intelligenz, vol. 26, pp. 357–363, 2012.
[6] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional neural networks: analysis, applications, and prospects,” IEEE Trans. neural networks Learn. Syst., 2021.
[7] J. C. Hung and J.-W. Chang, “Multi-level transfer learning for improving the performance of deep neural networks: Theory and practice from the tasks of facial emotion recognition and named entity recognition,” Appl. Soft Comput., vol. 109, p. 107491, 2021.
[8] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” J. Big data, vol. 3, no. 1, pp. 1–40, 2016.
[9] B. Mandal, A. Okeukwu, and Y. Theis, “Masked face recognition using resnet-50,” arXiv Prepr. arXiv2104.08997, 2021.
[10] A. R. Atmala and S. Ramadhani, “Rancang Bangun Sistem Informasi Surat Menyurat di Kementerian Agama Kabupaten Kampar,” J. Intra Tech, vol. 4, no. 1, pp. 27–38, 2020.
[11] F. Soulfitri, “Perancangan Data Flow Diagram Untuk Sistem Informasi Sekolah (Studi Kasus Pada Smp Plus Terpadu),” Ready Star, vol. 2, no. 1, pp. 240–246, 2019.
[12] V. M. M. Siregar and N. F. Siagian, “Sistem Informasi Front Office Untuk Peningkatan Pelayanan Pelanggan Dalam Reservasi Kamar Hotel,” J. Tekinkom (Teknik Inf. dan Komputer), vol. 4, no. 1, pp. 77–82, 2021.
[13] V. M. M. Siregar, H. Sugara, and I. M. Siregar, “Perancangan Sistem Informasi Pendataan Barang Pada PT. Serdang Hulu,” J. Comput. Bisnis, vol. 12, no. 2, pp. 111–117, 2018.
Published
2023-07-31
How to Cite
[1]
HartantoB. and SusyantoT., “PENERAPAN IMAGE RECOGNITION DALAM PENGENALAN OBJEK MENGGUNAKAN MODEL RESNET-50”, Biner : Jurnal Ilmiah Informatika dan Komputer, vol. 2, no. 2, pp. 131-136, Jul. 2023.
Section
Articles

STATISTICS

Abstract viewed = 584 times
PDF downloaded = 340 times