PENINGKATAN KINERJA KLASIFIKASI DIABETES MENGGUNAKAN METODE SUPPORT VECTOR MACHINE (SVM) DENGAN KERNEL RADIAL BASIS FUNCTION (RBF)
DOI:
https://doi.org/10.32699/zpgtg048Keywords:
Diabetes Mellitus, SVM-RBF, ADASYN, Machine Learning, Klasifikasi, Preprocessing DataAbstract
Diabetes Mellitus merupakan salah satu penyakit kronis dengan prevalensi yang terus meningkat secara global. Deteksi dini terhadap penyakit ini sangat penting guna mengurangi risiko komplikasi yang lebih parah. Penelitian ini bertujuan untuk mengevaluasi performa algoritma Support Vector Machine (SVM) dengan kernel Radial Basis Function (RBF) dalam mengklasifikasikan penderita diabetes berdasarkan data medis. Untuk meningkatkan performa model, diterapkan berbagai tahapan preprocessing seperti normalisasi dengan StandardScaler, pembangkitan fitur non-linear dengan PolynomialFeatures, seleksi fitur dengan SelectKBest, serta penyeimbangan kelas menggunakan ADASYN. Dataset yang digunakan adalah Pima Indians Diabetes dari Kaggle, yang memiliki permasalahan ketidakseimbangan kelas. Hasil evaluasi menunjukkan bahwa model mampu mencapai nilai akurasi sebesar 76,6% dan nilai ROC AUC sebesar 0,861. Temuan ini menunjukkan bahwa pendekatan berbasis machine learning dengan pipeline yang tepat dapat menjadi solusi yang andal untuk mendukung deteksi dini Diabetes Mellitus secara otomatis.
References
American Diabetes Association Professional Practice Committee. (2022). 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2022. Diabetes Care, 45(Supplement_1), S125–S143. https://doi.org/10.2337/dc22-S009
Bhagya, R. (2025). 10 Feature Selection Techniques Built into Scikit-learn That Every Data Scientist Should Know. Medium. https://medium.com/%40bhagyarana80/10-feature-selection-techniques-built-into-scikit-learn-that-every-data-scientist-should-know-f63bc5fb77d7
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953
Ejiyi, C. J., Cai, D., Eze, F. O., Ejiyi, M. B., Idoko, J. E., Asere, S. K., & Ejiyi, T. U. (2025). Polynomial-SHAP as a SMOTE alternative in conglomerate neural networks for realistic data augmentation in cardiovascular and breast cancer diagnosis. Journal of Big Data, 12(1), 97. https://doi.org/10.1186/s40537-025-01152-3
Haibo He, Yang Bai, Garcia, E. A., & Shutao Li. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 1322–1328. https://doi.org/10.1109/IJCNN.2008.4633969
Han, J., & Kamber, M. (2012). Data mining: Concepts and techniques (3rd ed). Elsevier.
IDF. (2019). The Diabetes Atlas. https://diabetesatlas.org/
Javeed, A., Dallora, A. L., Berglund, J. S., Idrisoglu, A., Ali, L., Rauf, H. T., & Anderberg, P. (2023). Early Prediction of Dementia Using Feature Extraction Battery (FEB) and Optimized Support Vector Machine (SVM) for Classification. Biomedicines, 11(2), 439. https://doi.org/10.3390/biomedicines11020439
Junus, C. Z. V., Tarno, T., & Kartikasari, P. (2023). KLASIFIKASI MENGGUNAKAN METODE SUPPORT VECTOR MACHINE DAN RANDOM FOREST UNTUK DETEKSI AWAL RISIKO DIABETES MELITUS. Jurnal Gaussian, 11(3), 386–396. https://doi.org/10.14710/j.gauss.11.3.386-396
Kemenkes RI. (2021). PROFIL KESEHATAN INDONESIA 2020. Kementerian Kesehatan RI.
Koklu, N., & Sulak, S. A. (2024). Using Artificial Intelligence Techniques for the Analysis of Obesity Status According to the Individuals’ Social and Physical Activities. Sinop Üniversitesi Fen Bilimleri Dergisi, 9(1), 217–239. https://doi.org/10.33484/sinopfbd.1445215
Kumar, S. (2022). Detailed Analysis of Classifiers for Prediction of Diabetes. https://doi.org/10.17577/IJERTV11IS090106
Muhammad Hilmy Haidar Aly. (2024). Klasifikasi Diabetes Menggunakan Algoritma Support Vector Machine Radial Basis Function. Jurnal Teknik Informatika dan Teknologi Informasi, 4(1), 28–38. https://doi.org/10.55606/jutiti.v4i1.3420
Ruze, R., Liu, T., Zou, X., Song, J., Chen, Y., Xu, R., Yin, X., & Xu, Q. (2023). Obesity and type 2 diabetes mellitus: Connections in epidemiology, pathogenesis, and treatments. Frontiers in Endocrinology, 14, 1161521. https://doi.org/10.3389/fendo.2023.1161521
Thieme, A., Belgrave, D., & Doherty, G. (2020). Machine Learning in Mental Health: A Systematic Review of the HCI Literature to Support the Development of Effective and Implementable ML Systems. ACM Transactions on Computer-Human Interaction, 27(5), 1–53. https://doi.org/10.1145/3398069
Wong, J. E., Yamaguchi, M., Nishi, N., Araki, M., & Lee, L. H. (n.d.). Predicting overweight and obesity status among Malaysian working adults: Comparing performance of machine learning with logistic regression.
World Health Organization, Diabetes. (2021). WHO. https://www.who.int/news-room/fact-sheets/detail/diabetes
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Device

This work is licensed under a Creative Commons Attribution 4.0 International License.












