KLASIFIKASI FITUR WARNA LEVEL ROASTING BIJI KOPI MENGGUNAKAN ARTIFICIAL NEURAL NETWORK

  • Tri Andre Anu Universitas Muhammadiyah Sumatera Utara
  • Rika Rosnelly Universitas Potensi Utama
  • Dedi Irawan Universitas Muhammadiyah Sumatera Utara
  • Ubaidullah Hasibuan Universitas Potensi Utama
  • Progresif Bulolo5 Universitas Potensi Utama
Keywords:
Classification, Roasting Level, Coffee Beans, Artificial Neural Netw

Abstract

Abstract

align="justify"Small and Medium Enterprises (SMEs) are using a manual method to notice the roasting level classification of coffee beans. However, the weaknesses in this technique are that the coffee roaster staff consumes time sorting the roasting level of the coffee beans. As a result, the coffee roaster focuses less because they take too long to sort the coffee beans—consequently, the mixed coffee beans in packages that should be elsewhere. Therefore a system is needed to help coffee roaster officers classify coffee beans using an artificial neural network. The data used are 60 coffee beans with three roasting levels: light roasted, medium roasted, and dark roasted. The classification process consists of a training stage and a testing stage. At the testing stage, using a sample of 30 coffee beans and based on the results of this study, the best results were obtained with a training value of 90%. In contrast, the testing accuracy was 66.67%.

Downloads

Download data is not yet available.

References

Rika Rosnelly dkk (2022). Pelatihan Pengenalan Teknik Pengolahan Citra Digital Pada Bidang Medis, JUDIMAS Vol. 3, No. 1, Juni 2022.
Yunita Prastyaningsih, Wiwik Kusrini (2021). Sistem Temu Kembali Citra Pada Level Roasting Biji Kopi Menggunakan Ekstraksi Fitur Warna, Jurnal Invotek Polbeng – Seri Informatika, Vol. 6, No. 2, 2021, ISSN: 2527-9866
Marhaenanto, B., Soedibyo, D. W., & Farid, M. (2015).Penentuan Lama Sangrai Kopi Berdasarkan Variasi Derajat Sangrai Menggunakan Model Warna Rgb Pada Pengolahan Citra Digital (Digital Image Processing). Jurnal Agroteknologi, 9(02), 102-111.
Argo, B. D., & Andreane, M. (2019). Identfikasi Parameter Biji Dan Bubuk Kopi Robusta Menggunakan Machine Vision Dan Metode Artificial Neural Network (ANN). Jurnal Keteknikan Pertanian Tropis dan Biosistem, 5(2),150-162.
Published
2023-05-31
How to Cite
AnuT., RosnellyR., IrawanD., HasibuanU., & Bulolo5P. (2023, May 31). KLASIFIKASI FITUR WARNA LEVEL ROASTING BIJI KOPI MENGGUNAKAN ARTIFICIAL NEURAL NETWORK. Device, 13(1), 8-13. https://doi.org/https://doi.org/10.32699/device.v13i1.4094
Section
Articles

STATISTICS

Abstract viewed = 253 times
PDF downloaded = 200 times

Most read articles by the same author(s)