KLASIFIKASI CITRA CACAR MONYET MENGGUNAKAN GRAY LEVEL CO-OCCURRENCE MATRIX DAN ALGORITMA LINEAR DISCRIMINANT ANALYSIS
Abstract
Monkeypox atau cacar monyet merupakan penyakit menular yang disebabkan oleh virus orthopoxvirus yang berasal dari hewan primata dan hewan pengerat. Berdasarkan data WHO sejak Januari 2022 sampai Juni 2023 terdapat 88.060 kasus terkonfirmasi cacar monyet dan 147 kasus kematian akibat cacar monyet yang tersebar di 112 negara di dunia. Penyebaran kasus cacar monyet yang terus meluas diberbagai negara, membuat cacar monyet menjadi salah satu penyakit yang banyak diperbincangkan. Pada penelitian ini dilakukan proses identifikasi citra lesi penyakit cacar monyet dan citra non-cacar monyet (campak dan cacar ayam) dengan melalui tahap preprocessing, tahap ekstraksi ciri GLCM dengan 7 fitur (contras, correlation, energi, homogenitas, entropi, mean dan variance), dan tahap pelatihan model pembelajaran mesin klasifikasi menggunakan algoritma LDA. Melalui proses evaluasi 10-fold cross validation didapakan hasil evaluasi model pembelajaran klasifikasi yang dibangun menunjukkan nilai performa rata-rata akurasi sebesar 80,55%, presisi 78%, recall 80%, dan spesificity 79%. Hasil ini menunjukkan bahwa model klasifikasi yang dikembangkan memiliki performa yang baik (good classification) dalam membedakan citra cacar monyet dan non-cacar monyet.
Downloads
References
[2] L. Qelina and R. Graharti, “Human Monkeypox Virus : Respon Kesiapan Darurat,” Medula, vol. 9 (3), pp. 483–489, 2019.
[3] M. H. Temsah, F. Aljamaan, S. Alenezi, and Dkk, “Monkeypox caused less worry than COVID-19 among the general population during the first month of the WHO Monkeypox alert: Experience from Saudi Arabia,” Travel Med. Infect. Dis., vol. 49, no. July, p. 102426, 2022.
[4] World Health Organization, “2022-23 Mpox (Monkeypox) Outbreak: Global Trends),” Internet. Accessed: Feb. 22, 2023. [Online]. Available:https://worldhealthorg.shinyapps.io/mpxglobal/
[5] K. Yupie, S. Ajib, U. Ibnu, W. Mulyono, and D. P. Prabowo, “Klasifikasi Batik Kudus Berdasarkan Pola Menggunakan K-NN dan GLCM,” pp. 509–514, 2020.
[6] Muhathir, S. M Hamdani, and D. A. Larasati, “Wayang Image Classification Using SVM Method and GLCM Feature Extraction,” JITE (Journal Informatics Telecommun. Eng., vol. 4, no. 2, pp. 373–382, 2021.
[7] W. I. Praseptiyana, A. W. Widodo, and M. A. Rahman, “Pemanfaatan Ciri Gray Level Co-Occurrence Matrix (GLCM) untuk Deteksi Melasma pada Citra Wajah,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 11, pp. 10402–10409, 2019.
[8] A. Anggrestianingsih, A. W. Widodo, and M. T. Furqon, “Implementasi Metode Linear Discriminant Analysis (LDA) Untuk Klasifikasi Pengambilan Mata Kuliah Pilihan,” vol. 3, no. 10. pp. 10337–10343, 2019.
[9] Nurhalimah, P. S. W. I Gede, and B. Fitri, “Klasifikasi Kain Songket Lombok Bedasarkan Fitur GLCM dan Moment Invariant dengan Teknik Pengklasifikasian Linear Discriminant Analysis,” vol. 2, no. 2, pp. 173–183, 2020.
[10] P. S. Rizka, D. R. Ulfa, and R. S. Arie, “Implementasi Metode Linear Discriminant Analysis untuk Deteksi Kematangan pada Buah Stroberi,” Semin. Inform. Apl. Polinema 2020, no. 2013, pp. 395–401, 2020.
[11] S. Anwar and S. Maringan, “Implementasi Metode Color Moment dan GLCM Untuk Mendeteksi Penyakit Tanaman Karet,” Inf. dan Teknol. Ilm., vol. 7, no. 2, pp. 145–151, 2020.
[12] G. Arunkumar, K. Geetha, S. Arulraj, and P. Rajesh, “an Enhanced Diagnosis Method for Cancer Detection Fuzzy Logic Method,” Int. J. Electr. Eng. Technol., vol. 9, no. 5, pp. 183–191, 2018.
[13] Y. Mohtar et al., “Klasifikasi Kanker Paru Paru menggunakan Naïve Bayes dengan Variasi Filter dan Ekstraksi Ciri GLCM,” Indones. J. Appl. Phys., vol. 11, no. 2, p. 256, 2021.
[14] Z. Muhammad Syah, Jondri, and L. Kemas Muslim, “Prediksi Retweet Berdasarkan Feature User-based Menggunakan Metode Klasifikasi Support Vector Machine,” eProceedings …, vol. 8, no. 5, pp. 11183–11191, 2021.
[15] A. Luthfiyah, W. Yuni, and C. Nurul, “Penerapan Klasifikasi Random Forest Terhadap Data Gangguan Spektrum Autisme ( ASD ) Pada Anak – Anak Menggunakan Seleksi Fitur Principal Component Analysis,” SENAMIKA (Seminar Nas. Mhs. Ilmu Komput. dan Apl., pp. 356–364, 2022.
[16] P. Tiska and R. Didi, “COMPARISON OF DATA MINING CLASSIFICATION ALGORITHM FOR,” J. Techno Nusa Mandiri, vol. 17, no. 1, pp. 23–30, 2020.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
An author who publishes in this Journal agrees to the following terms:
- Author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgement of its initial publication in this journal.
- Author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).